Perturbation expansions and error bounds for the truncated singular value decomposition

نویسندگان

چکیده

Truncated singular value decomposition is a reduced version of the in which only few largest values are retained. This paper presents novel perturbation analysis for truncated real matrices. First, we describe expansions truncation order r . We extend results subspace to derive first-order expansion operator about matrix with rank greater than or equal Observing that can be greatly simplified when has exact , further show admits simple second-order rank- matrix. Second, introduce first-known error bound on linear approximation perturbed Our depends least unperturbed and norm Intriguingly, while subspaces known extremely sensitive additive noises, newly established holds universally perturbations arbitrary magnitude. Finally, demonstrate an application our mean squared associated TSVD-based denoising solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the truncated multilinear singular value decomposition

In this report, we investigate the truncated multilinear singular value decomposition (MLSVD), proposed in De Lathauwer et al. (2000). Truncating the MLSVD results in an approximation, with a prescribed multilinear rank, to a tensor. We present a new error expression for an approximate Tucker decomposition with orthogonal factor matrices. From this expression, new insights are obtained which le...

متن کامل

On the Statistical Meaning of Truncated Singular Value Decomposition

Empirical data collected in practice usually are not exact. For various reasons it is often suggested in many applications to replace the original data matrix by some lower dimensional representation obtained via subspace approximation or truncation. The truncated singular value decomposition, for example, is one of the most commonly used representations. This note attempts to shed some light o...

متن کامل

Updating Singular Value Decomposition for Rank One Matrix Perturbation

An efficient Singular Value Decomposition (SVD) algorithm is an important tool for distributed and streaming computation in big data problems. It is observed that update of singular vectors of a rank-1 perturbed matrix is similar to a Cauchy matrix-vector product. With this observation, in this paper, we present an efficient method for updating Singular Value Decomposition of rank1 perturbed ma...

متن کامل

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2021.05.020